Performance Evaluation for Distributed System Components

Petre DINI, Gregor v. BOCHMANN, Raouf BOUTABA

University of Montreal, CP 6128, Succ. CENTRE-VILLE Computer Research Institute of Montreal

Computer Science and Operation Research Department

Montreal, (Qc), H3C 3J7, Canada

Abstract

The performance evaluation of hardware and software
system components is based on statistics that are long
views on the behavior of these components. Since system
resources may have unexpected behavior, relevant cur-
rent information becomes useful in the management proc-
ess of these systems, especially for data gathering,
reconfiguration, und fault detection activities. Actually,
there are few criteria to properly evaluate the current
availubility of component services within distributed sys-
tems. Hence, the management system can not realistically
select the most suitable decision for reconfiguration. In
this paper, we present a proposal for a continuous evalu-
ation of component behaviour related to state changes.
This model is further extended by considering different
categories of evenis concerning the degradation of the
operational state or usage state. Qur proposals are based
on the possibility of computing at the component level,
the current availability of this component by continuous
evaluation. We introduce several current availability fea-
Lures and propose formula to compute them. Other events
concerning a4 managed object are classified as warning,
criticul or outstanding, which leads to a more accurate
operational view on a component. Several counter-based
events ure thresholded to improve predictable reconfigu-
rution decisions concerning the usability of a component.
The muin goal is to offer to the management system cur-
rent relevant information which can be used within man-
agement policies. These policies could refer to the
enhancement of the trading-based system services, the
flexible polling frequency tuned with respect to the cur-
rent evaluation, or particular aspects related to dynamic
tests within distributed systems. Implementation issues
with respect to the standard recommendations within dis-
tributed systems are presented. Finally we describe how
the reconfiguration management sysiem can use these
Sfeatures in order to monitor, predict, improve the existing
configuration, or accommodate the polling frequency ac-
cording to several simple criteria.

Keywords: current availability, component health,
adaptive reconfiguration

0-8186-7442-3/96 $5.00 © 1996 IEEE

20

1801, McGill College street, #3800
Montreal, (Qc¢), H3A 2N4

1: Introduction

In the object-oriented approach, system resources
are represented by objects portraying many behavioural
facets. Commonly. two distinct specifications of the be-
havior of a resource co-exist. One specification describes
the operational behavior of a resource. i.e. what it does in-
dependently of any management, its own functionality:
the TCP/IP protocol, modem behavior. bridge’s opera-
tions. The other specification defines how a resource can
be managed in correlation with the operational behavior,
i.e. its management behavior. It constitutes the managed
object definition, that must be written in accordance with
the information structure of the MIB (Management Infor-
mation Base). A management system is an application
which consists of specialized managing objects playing
different management roles, such as monitoring, fault de-
tection, or reconfiguration. These roles are fulfilled based
on the information they collect across management oper-
ations on managed objects, by interpreting the results of
these operations that come back. In the pro-active man-
agement approach, the collection of information is initiat-
ed by managing objects. Often. real resources behave
unexpectedly. When a relevant event happens to or in the
resource, its appropriate managed object may spontane-
ously generate notifications. Consequently, the managing
objects interpret not only the operation results, but also
object notifications. To allow this interaction between
managing and managed objects, management operaiions
and notifications are two important features which must
be defined by the management specification. Manage-
ment operations constitute the management interface of a
managed object. In object-oriented system specifications,
a managed object is an instance of a type. Consequently,
a type definition must be documented with visible prop-
erties, favouring the interaction of its instances with the
management system. These properties are represented by
1) state attributes which represent the operational, usage
or administrative state of the concerned resource, 2) man-
agement operations, that can affect either the managed
object attributes, at the instance level, or the managed ob-
ject as a whole, 3) matching rules to apply the CMIP fil-
ters [4], 4) management behavior, according to the func-

tional behavior of resources, 5) notifications and circum-
stances to emit them, 6) specific packages, as well as its
position in the inheritance hierarchy [ISO/IEC 10165-4].
In this paper, we are concerned with the use of state
changes and notifications to evaluate the performance of
a systemn component, which becomes relevant in self-re-
configurable distributed systems.

One of the more challenging problems associated
with distributed systems is the subject of system manage-
ment. Monitoring the functionality of complex distribut-
ed systems implies various specific management
activities with respect to resource allocation, dynamic
system changes, and evaluation of these changes in order
to offer the QoS (Quality of Service) desired by the users.
In small systems, management activities are performed
either internally, by network operating systems, or exter-
nally, in an ad hoc manner, by the system operator. Since
dynamic prescribed changes or unexpected component
behaviors, due to either users or the resource availability,
are often possible within distributed systems, manage-
ment aspects have became increasingly complex. The
system operator must correlate its reconfiguration actions
with respect to dynamic changes occurring in a system.
Since within large computer systems the human operator
is overwhelmed by various conflicting situations, man-
agement systems gradually overtake most human opera-
tors” tasks.

Since dynamic properties allow an active manage-
ment, we focus in this paper on state changes and notifi-
cations. The main purpose of this paper is to propose a
dynamic quantitative evaluation of a system component
behavior, which may be considered in automatic recon-
figuration policies. The goal is to offer to the manage-
ment system current relevant information, which can be
used within management policies implemented as the op-
erational behavior of managing objects. Our proposal is
based on the possibility of computing, across a managed
object, the current availability of the resource it repre-
sents by a continuous evaluation. A model of the current
availability is presented. We introduce several current
availability features of a managed object, and propose
formula for computing them. Other events concerning the
operational state of a managed object are classified as
warning, critical or outstanding, which leads to a more
accurate operational view on a component, i.e. different
alarms concerning the operational state are classified with
respect to their relevance. A combination of these two
concepts allows us to define the health of a managed ob-
ject. For those managed objects portraying a maximum
capability, the capability range is thresholded between
idle and busy, to accurately capture the loading. Conse-
quently, several counter-based events concerning the us-
age state are evaluated with respect to threshold! and
thershold2, which lead to a warning or critical usage
state. We define the relation is-better-than, that creates an
ordering between system components offering an identi-

21

cal or similar service. Based on our model, several moni-
toring and reconfiguration policies are described, as well
as particularities for implementing them.

The outline of this paper is the following. Shortcom-
ings of related work are presented in Section 2. In Section
3, we introduce the models for the performance evalua-
tion: the current availability and its derived features. Sec-
tion 4 presents monitoring and reconfiguration policies
based on our models: how these new properties can be
used by the management system in order to solve current
allocation or monitoring problems. Section 5 presents the
implementation experience of our proposal related to ti-
mestamps in areal system. Section 6 focuses on the utility
of this proposal, while Section 7 gives some conclusions
on our proposal and future work.

2: Related work
2.1: States, actions, and state changes

Different classes of managed objects have a variety
of state attributes. A change of at least one state attribute
value determines a state change for the concerned com-
ponent. A state change requires an action to be fired for
modifying an attribute value. This action could be either
internal to a managed object (event), or external, issued
from the managing system (command). Consequently, a
managed object representing a real resource provides
two kinds of state attributes. The first category refers to
the attributes whose values are updated by the resource
itself in order to correctly present its operationalState
(enabled, disabled). A refinement of the operational state
enabled can be specified by another state attribute called
usageState (idle, active, busy). By interpreting these val-
ues, the managing system may either apply policies
within the subsystem with respect to the state of one par-
ticular component, or decide to directly react across an
administrative state attribute of this component, by
means of commands. Commands act on the second cate-
gory of state attributes, that is, attributes whose values
are managed by the managing system. For instance, the
value space {locked, shutting down, unlocked} of the
adminisirativeState attribute is modified only by the
managing objects.

State change aspects within distributed systems are
important, since they are the basis for building manage-
ment policies. Since state combinations leads to a com-
plex management task, the state change management
considering all component parameters is difficult to be
performed. Hence, the managing system needs a unique
criterion to evaluate and decide actions in response to
state changes. In many situations, the resource allocation
is based on human decisions in an ad hoc manner, and
thus, it takes no advantages from an optimal and automat-
ic process. More current information is needed on state
changes with respect to internal actions, which realistical-
ly characterize current changes at the component level.

Despite several global approaches, the evaluation of the
quality of the operational state using an unique criterion
is currently based on statistics. In the following, we pro-
pose a continuous evaluation of state changes, based on
the possibilities of measurement within distributed sys-
tems.

2.2: Performance evaluation

Reliability, maintainability, and availability are ma-
jor topics with respect to the utilization of a software and
hardware component. In order to cope with state change
issues, many funndamental performance models based on
state spaces, and taking into account these concepts have
been proposed [11[2]{10][11]{12]{13}[16]. The availabii-
ity represents the probability that a system is able to work
at any time during a given period. All studies consider
that a component continuously alternates trom the opera-
tional state enabled to the repair state disabled {2][10].
Actual studies are entirely based on probabilistic ap-
proaches, where appropriate density functions statistical-
ly approximate the component availability. The case of
operational interruptions without repair is less studied,
although it is quite common within distributed systems,
since it implies a continuous measure. However, even if
a measure is continuously performed. the instant of a fail-
ure cannot be predicted, and statistic values serve only as
a relative comparison [10]. Pagés and Gondran have in-
troduced the instantaneous failure rate and instantaneous
repair rate for a system, but their calculi use statistics
laws, and only a manual method for solving small sys-
tems is proposed [12].

2.3: Continuous measurements

The problems are: 1) what must be represented as rel-
evant information within a managed object, and 2) how
this information could be accurately interpreted by the
managing objects. The first question is answered by ex-
isting standard recommendations. A first proposal for the
standardization of state attributes of managed objects is
given in [ISO/10164-2]. Two attributes define internal
component states, i.e. governed by internal events, name-
ly operationalState and usageStare, whereas the adminis-
trativeState attribute allows management commands
(external events). Based on space values of these at-
tributee, several critical combinations are identified ags
relevant for the managing objects. A special record class,
called stateChangeEventClass, is proposed in order to
record state changes or other relevant counter-based, or
type-based events. Based on this model, we can compute
several continuous parameters in order to evaluate the
current availability of a component, regardless statistics
laws.

To answer the second question, there are some diffi-

22

culties related to the complexity of calculi. However, the
values of previous parameters can be entirely computed,
based on the state model proposed by standards. Conse-
quently, the managing system has neither a unique crite-
rion to evaluate and decide actions in response to state
changes, nor to globally evaluate the state of many coop-
erating components with respect to the type of their rela-
tions at a given moment. As a result, the transparency of
management decisions is difficult to be achieved, guaran-
teed or improved.

Also. the lack of the pertinent computable informa-
tion at the component level does not allow us to infer pre-
dictive management decisions with respect to the
component behaviour. Moreover, when changes within
system reconfigurations occur due to relation changes or
component changes, the management system can neither
evaluate the degree of the enhancement of services, nor
detect critical areas with respect to a degradation of offer-
ing these services. Since there are no criteria to properly
evaluate the current availability of services within a DS
(Distributed System), the management system can not re-
alistically select the most suitable solution.

3: Model for the performance evaluation

Our proposal concerns three related facets of state at-
tributes and notifications. First, we define the semantics
and computing formula for the current availability, based
on operational state changes. Second, a combination be-
tween the current availability and severity-based events is
used to define the health of a system component. Finally,
some thresholded events concerning the usage state are
proposed and interpreted in concert with the health.

The state change model within the large distributed
systems identifies the major cooperating parts involved in
the management of state changes. A simplified model of
DSs and the interaction with its managing system is pre-
sented in Figure 1. Real DS resources are abstractly rep-
resented by managed objects in management repositories,
conforming to MIBs. Currently, real DS resources send
events, e.g. enableState or disableState, reporting their
operational state changes. For example, the event ena-
bleState determines the operationalState attribute value to
be enabled.

command

| "~

—P

Managing

[MIB Abstract Representation of Real Resources
System

stateChange
event types

¢ + events
commands,
‘ - enabledState
Real DS Resources - disabledState

Figure 1. State change model for real DS resources

3.1: Current availability

From the management point of view, we distinguish
three kinds of availability: 1) actual, 2) estimated, and 3)
objective. The actual availability represents the model of
the real world. Its value may continuously change, ac-
cording to the concerned system resource. The estimated
uvailability defines the availability value, as calculated at
different instants in time. The objective availubility is the
availability value, as considered by the system specifica-
tion. The objective availability is that claimed by the
component producer, as a result of statistical measure-
ments across many groups of products, and over long
time (sometimes, it is called usymptrotic availability), e.g.
0.9996 for a satellite channel [16]. The estimated availa-
bility 1s commonly computed each time an operational
state change occurs. Its value is valid up to the next com-
puting, and constitutes the unique value considered by the
managing system. Hence, hereafter we refer to it as cur-
rent availability, as viewed by the managing system. Be-
tween two sequential computations, the actual
availability value really defines the component availabil-
ity. The current availability substitutes at the manage-
ment level the actual availability during this interval.
Consequently, when the current availability is computed,
its value is equal to that of the actual availability. In time,
the current and actual availability tend to the objective
availability.

According to the preceding definitions, the current
availability represents an estimation obtained by meas-
urements, based on timestamps of operational state
change events, as shown in Figure 2.

operatiotial
enable
event

disable
event

enable
event

disable
event

| L L
enabled T | A T T

disabled

states

tune
f -

ty Il 2 B

Figure 2: Abstraction of operational stute changes
by state diagrams

A useful representation of state transitions by using
the FSM (Finite State Machine) shown in Figure 3, al-
lows us to identify internal or external events involved in
the management of component states. The insert event
represents the first event used to communicate to a system
that a new resource has been inserted. The first initialisa-
tion of its corresponding managed object is performed by
the start-period event. We are concerned with the re-
source behaviour after this event occurs.

Each time the component is removed from a system
(remove event), an insert event and then, a start-period
event are required in order to re-start the component. Af-

23

ter an event start-period the operational state is enable
(Figure 3). A remove event can act in both operational
states of a component. Internal events (enuble, disuble)
determine operational state changes and simultaneously
the occurrence of the appropriate external notification
(enableState, disableState) sent to the appropriate man-
aging object. We can measure this interval between two
consecutive events remove and insert. In conclusion, this
model permits all measures for creating statistics on the
availability. In the following, we are concerned with how
to compute current availability values.

start-period
event /7" N

4 Nt

ﬁ% P

disabledState

enable disable

cgabledStale
vent

event
isert disabled)+
event . remove
e G - 3

~.../ event

Figure 3. Finite state representuation of the
operational state of a real resource

where the events have the following meaning:

start-period: external start event at the first initialisation of the
resource represented by these states and tragsitions;

start-period action, when the resource has been delibe-
rately disconnected by external reasons (such of
resource remnovals) and the real state was enabled;

start -period action, when the resource has been deli-
berately removed, being in the state disabled;

insert: each time a resource begins a new period after a

repair activity or maintenance activity {after remove event)

enable: operational state change event from the disabled state
to the enabled state ;

disable: operational state change event from the enabled state
to the disabled state

3.2: Current availability and derived features

Current availability is a feature of a system compo-
nent representing the availability of component’s servic-
es up to a given time. Its value defines how long this
component has been in the operational state enable since
its initialization.

Consequently, the current availability value is a con-
tinuous function of time, defined as a quotient between
the amount of time where the resource was been in the en-
abled state (commonly called operational time) and the

observation period (between the time ty of the event sturt-
period and the time t of the end of the observation period).

T = [tg. =] tg is the timestamp where the event start-period occurs (1)

a: T->(0,1.0)

t
[Moy,
t-1g t

where A ()= ¢ 1. if (operational state at tine t = enabled)
= A

a(ty =

0, otherwise

As shown by formula (I). the actual availability val-
ue is a continuous function of time. defined as a quotient
between the amount of time where the resource was been
in the enabled state (commonly called operational time)
and the observation period (between the time tq of the
event start-period and the time t of the end of the obser-
vation period).

For management purposes, this formula must be used
atany time t € T. However. polling responses and notifi-
cations are issued at different timestamps t; € T. For the
computation mechanism, this formula is time and space
consuming when it is applied at each state change event.
because the system must memuorize the behavioral history
of state change as <event type. timestamps> and recom-
pute the formulae (I) each time the actual availabiliry val-
ue is requested. Consequently. to calculate the a(y)
values. we utilize an on-line recursive formula (IT). This
way is less expensive in terms of computing and storage
Costs.

The actual availability can is calculated each time an
state change event occurs, or on-demand at the initiative
of managing objects, 1.e. between two state changes. For
the definition of computing formula, we consider first
two consecutive operational state change events, as pre-
sented in Figure 4. Each state change event has the times-
tamps of its occurrence attached to. The formula (II)
allows us to compute the current availability a(t;), which
is valid within the interval [t;. t;;). by knowing the cur-
rent availability a(t;.;), which is valid within the interval
[{i~l* ty).

disable enable

even event
enabled f& - cnablcdf 5! —
lisabled - dxsable(#i‘——»

G 8 L1 4

Figure 4. Consecutive stute chunge events

a() = —— (@) x (G- o+ AME) X (G- 5)
where A(t) has the same expression as in formula (),
and t; means just before t;.

Current availabiliry tendency af[t;;, 4], €o) is a qual-
ifier of the () variation in an interval delimited by two

24

consecutive operational state changes. As we have seen,
the aft) values vary over time. ¢({t;_|, t;], &) is an infor-
mal evaluation of the current availability variation with
respect to an acceptable variation * €y within [t;_;, t;]. The
definition of the ¢([t; 1, t;], €g) is the following:

T=lg=], 4,4 T (1D

a(lt 1,4} 800 (4, 4] --> {stable, ascendent, descendent}

stable if lagg(ty) - a(t) < £gp
allt.g. tloggl = ascendent ifag(t;) > a(t.;) + €0, and
descendent ifay(t;) < a(t) - 0.

where t;.) and t; are consecutive tunestamps of operational state change events

Based on the current availability values, we introduce
the weighted average of current availability a(t) as a
measure with emphasis on recent a(t) values. The more re-
cent a(t) values should be taken into account with a high-
er weight. Based on Figure 2, where the computed values
are performed at ¢;, we consider the weighted current
availability which emphasizes the latest a(t) values by an
exponential factor. This factor takes into account the
length of the interval that has been considered:

alt)=(alt)+ Ax a(ty) x exp(t; - 4.y) /(1 +exptj- ;1)) (V)

wherein A = 0. if the operational state within [t;_j, t;) is
disabled, and A = 1. if the operational state within (t;_,]
is enabled.

3.3: Alarm refinement in operational state enable

We classify alarms occurring in the operational state
enabled into three severity levels: warning alarms, criti-
cal alarms, and outstanding ularms. For example, low-
level-1 of the tank-toner of a printer is a warning alarm.
After this alarm occurred, the printer still works, the text
quality is good enough, but, if this alarm is not cancelled,
i.e. handled by processing its origin and eliminate its
causes, the QoS may degrade. We call this state
warningEnabled. If the cause of this alarm is solved, the
operational state becomes enabled. If not, a critical alarm
may occur, 1.e., low-level-2, when the printer operational
state becomes criticalEnabled. From this state, the
printer could become disabled, if the alarm low-level-3
occurs. Otherwise, the printer becomes enabled, if the
cause of the alarm low-level-2 is completely eliminated,
or warningEnabled if the cause is only partly eliminated.
Each time an outstanding alarm occurs, the state disabled
is reached. For example, the warming alarm, i.e. a high
internal temperature of a printer, determines the de-acti-
vation of printer services. regardless the current opera-
tional state. The model of alarms classification must be
defined for each component type. as shown in Figure 5.
It is not mandatory for a component type to prescribe all
these kinds of alarm types. Additionally, it is not relevant

if this alarm is sent by the concerned component, or it is
captured by other components across their relationships.
This means that, even if the concerned object does not
specify such of alarms, the transitions of its state change
model can be ensured by other partners.

general classification” example Jor a printer
warningAlarms warmningAlarm: low-toner-levell
critical Alarms criticalAlarm: low-toner-levei2

outstandingAlarm; low-toner-level3, warming,
tray-empty

outstandingAlarms

Figure 5. Alarm classification in the
operational state enabled

3.4: Thresholds of the usage state

Many system resources have a limited capacity of
their services. This can be expressed as number of clients
simultaneously served, memory space, or buffer space.
For example, a Lantastic network operating system al-
lows a maximum of 80 stations, but the QoS is fuliy guar-
anteed only up to 20, while over 75, its services are very
slow. Such kinds of thresholds are also typical for CPUs,
multimedia servers, e-mail servers, etc. Consequently, we
define between idle and busy, two thresholds specific to
different types of components. When the capacity occu-
pancy exceeds the first threshold, the usage state becomes
warningActive, whereas after the second threshold, the
usage state is criticalActive. When a resource is first ini-
tialized, its usage state is idle. When a new user is served,
the usage state becomes active. According to changes of
the number of clients, or the use of the resource capacity,
and with respect to threshold1 and threshold2, the compo-
nent is either in the warning Active state, or critical Active
state, respectively. If a new user is served at the limit of
the maximum capacity, the the original maximum capac-
ity decreases because of a failure, or a user request a lot
of capacity, the usage state becomes busy.

The model of thresholding usage state values is pre-
sented in Figure 6. All components portraying a limited
capacity and one or both thresholds must accordingly
adapt their usage state.

full capacity busy
thersholdl criticalUsage
thershold2 warnmgUsage
no users idle

Figure 6. Thresholds of the usage state

4: Performance evaluation

The rationale to compute the current availability and
to extend the operational state model and usage state
model was to dynamically and transparently capture the

25

real behavior of a system resource and accordingly adapt
reconfiguration activities.

4.1: Policies

These models of the component behavior are useful
for the system monitoring, and to create client-server like
cooperation relations, achieving the best QoS across
these cooperation relations. We describe further the use
of our proposal concerning the current availability, oper-
ational state, and usage state to build management poli-
cies concerning the system monitoring and cooperation
relation establishement. A management policy may be a
part of, or the whole behaviour of, a management appli-
cation. A management policy is a statement of the form:

<policy-name>::= if <condition>
then {<actions>

where <condition> is a predicates on property values of a
system component, while <actions> represent manage-
ment actions. These management actions can be simple
updates of component properties, or complex manage-
ment activities performed by managing objects.

A management policy can implicitly use generic
well-known policies, such as max {a, b}, min {a, b}, pri-
ority ordering {a, b, ¢, d...}, the FIFO policy, etc.

Simple management policies can be combined. Po-
tential conflicts between different actions prescribed by
each policy are partly solved by using generic policies.

4.2: Monitoring policies

Monitoring policies may independently use criteria
based either on the current availability, operational state,
or usage state. All following policies concern a given
component, or a given set of components. A simple mon-
itoring policy based on the current availability could be
expressed as:

Pl: ifa(n<ay
then
admunistrativeState = shutting<down
and
polling Frequency = f (a(t)), as defined in [5].

where ay is a threshold of the current availability defined
by the management system for those system components
playing critical roles for particular applications. Such a
component may be a satellite channel, a CPU, an operat-
ing system. or a host playing the role of a management
station.

A policy based on the operational state could be:

P2: if opState = criticalEnabled, then
administrativeState = in-active-test
or
P3: if opState = warningEnabled
then
administrativeState = in-passive-test
and

pollingFrequency = f (a(t}).

The usage state values may be used to build monitor-
ing policies. These policies ensures an optimal solution
for load-balancing algorithms ([3], see also Section 4.3).

P4: if usState = criticalActive,
then
administrativeState = shutung-down
or
P5: if usState = wamingActive,
then
pollingFrequency = g(usState), as defined n [6].

These simple policies can be combined to monitor
more complex situations. The problem raised in this case
is the potential contradiction between management ac-
tions independently specified by each policy. Some ge-
neric policies are used to solve these contradictions.
which are particular to different contexts. Let us consider
P3 and P53, leading to the policy P35. Then, the choice of
the polling frequency is performed by the generic policy
expressed as max {a.b}.

p35: if opState = warningEnabled,

and
usState = criical Active
then
pollingFrequency = max {F(a), glusStatey }

Other contradictions may appear with respect to the
changes decided for the administrative state. In this case,
a policy establishing a priority between the values of the
administrative state is requested. For example, if we con-
sider the policies P1 and P3, the policy P13 may be as fol-
lows:

P13: if a(t)< ag,

and
opState = warningEnabled
then
administrativeState = shutting-down
and
pollingFrequency = f (a(1)).

In this case. a priority policy between the states of the ad-
ministrative model has been introduced. i.e. shutting-
down has-a-greater-priority than in-passive-tests.

4.3: Establishing cooperation relations

Commonly, establishing cooperation relations im-
plies many kinds of constraints. expressing the requested
QoS or the current state of the system resources which
must interact. In distributed systems, identical or similar
services can be offered by many resources. QoS issues
conceming static properties of potential cooperating re-
sources, offered as interface constraints by their appropri-
ate managed objects, have been presented in [6]. In the
following, we emphasize QoS constraints related to the
real performance of cooperating objects. The problem is,
how to select the most available server for a client, based
on the current measures and models that we have pro-
posed in this paper. We define the relation is-better-than,

26

represented as "C/ > C2"” and read C/ is-better-than C2,
between two components C/ and C2, if, from the man-
agement point of view, the QoS offered by CI is better
than the QoS offered by C2, based on their current avail-
abilities, operational state values, and usage state values.
The same relation can be used for ordering operational
state values and usage state values, as well as current
availability values. By definition,

enabled > warningEnabled > criticalEnabled > disabled,

wlle > warningUsage > criticalUsage > busy, and

at)e) > aftlcy, ifA)ey > (D,
where 5([)(3 represents a(t) of the component C.

At i), go)er > allte, bl godea, if @[t ik £oder > @[t i), €o)ez
with [t y) < [4.. 4]

We define the Aealth of a component with respect to
its weighted current availability and its operational state,
as h(t)- = < opState, aft)>~ We present several decision
policies based on the health of a component and its usage
state. Consequently, a management policy C/ > C2,
called operational-state-first, can be defined as:

Wiiey = h(tes & ({opStater; > opStaters) v ((a(Dry 2 a(Dm) A
{opStatec) = opState ()

while a management policy C/ > C2, called current-
avatlability-first, can be defined as:

h()ep > hitley < (a0 > abe) v (@ter = a(Yeg) A
(opState) > opState,))

QoS is directly dependent of the loading for many
types of servers. Consequently, we define the tuple
<health, usState> ¢, as a potential performance of a given
component C. Consequently, a management policy C/ >
C2, called heulth-first, can be defined as:

13> 2 & {(hitg) > ey v (h(Yep = by ~ (usStates, > usStatery))

while a management policy C/ > C2, called usState-
first. can be defined as:

1> C2 < (usStateq; = usStatery) v ({usStateq| = usStatecy) A
(alt)cy > alticz))

Other policies can be used to select a server, e.g. a
cost-based policy [7]. Consequently, we can combine
cost and functional aspects in different policies to select a
better server. A policy called costz-only can be defined as:

1 > (T2 e (costley < Costem).

5: Implementation aspects
5.1: Definition of the current availability
function and its computing algorithm

We are only concerned here with the on-line comput-
ing using the on-line current availability function and the
on-line algorithm implementing it. For simplicity we will

subsequently use the Ajy(t) = {a(t), a(ty), e[, 4], &)}
notation to describe the properties related to the current
availability at the time ¢; for a system component id. The
on-line approach refers to the in-time and recurrent com-
puting of Ajy(t) values. For each component, all change
events and timing stamps are recorded somewhere, as pre-
viously presented. The on-line function infers new A;y(t;)
values, based on Ajy(t;.;) values, by considering the state
change event (disable, enable). The on-line function re-
quests as iput data only the component identifier, the
identification of the change event, and the Aj4(t;.;). For
simplicity, in the on-line algorithm we consider the cur-
rent availability tendency threshold gy = 0.

5.2: Implementation aspects concerning
change events

To apply the computing function, we have assumed
that input data events are recorded somewhere. In fact, in
the actual networks, these data are registered by State-
ChangeEventRecord class [ISO/IEC 10164-2] which of-

-fers additional information on change events. We have
identified three classes of problems which can arise by
applying the algorithm implementing the on-line func-
tion, that is, (1) the change record capacity, (2) the mode
of the record deletion, and (3) the scheduling of measure-
ment periods. The change record capacity (the Max-
LogSize attribute of the LogRecords class) limits the
number of computed values if MaxLogSize value is de-
terminate [ibidem]. If MaxLogSize is indeterminate, the
algorithm can be applied any time. The mode of the
record deletion (the LogFullAction of the LogRecords
class) determines the maximum time interval where data
are available for the algorithm. If the LogFullAction val-
ue is wrap, the earliest set of records will be deleted. Con-
sequently, the algorithm has not a long view on input
data, and it can not be retroactively used over the MaxLog
Size value. If the LogFullAction is halt, records already
in the log will be retained, but no more records will be
logged. In this case, the computed Ay(t;) values are not
updated. The algorithm can be useful for only state
change records up to the halt moment. The scheduling
manner affects twice the algorithm: first with respect to
the input data (computing within the interval [ty tnax]),
and second, related to the initialisation data. LogRecords
presents the LogSchedullingPackages attribute having
three option values: daily, weekly, or a [ty tyopl period.
Thus, the input computing interval of the algorithm must
be less or equal to LogRecords scheduling interval. In the
case of a new scheduling period, the initial health values
must be the last computed values within the previous
scheduling period.

5.3: Aspects of the on-line initialisation

Two aspects related to the initialisation are relevant.

27

The first refers to the recording of current availability
values, and the latter to the usability mode of the system.
The on-line algorithm needs the last computed Ayy(ti.1)
values to calculate the updated values at t;. Four imple-
mentation solutions are possible namely, (1) appropriate
current availability attributes of the managed object rep-
resenting the real DS resource represent computed val-
ues, (2) a special currentAvailabilityChangeRecord class
which inherits from the StateChangeEventRecord
records these values, (3) there is a special currentAvaila-
bility class inheriting from LogRecord class which
records only the {A4(ts), s < i} values, and (4) a special
current availability data base dedicated to these val-
ves.The first case implies the addition of several at-
tributes representing A;4(t;) values. Consequently, the
MIB components must be slightly completed.

In the next two solutions, the new classes partially in-
herit also several constraints related to the mode of the
record deletion mode and to the scheduling manner for
recording. If the mode is wrap, the link between the com-
puted health values at t; ; and the computing step at t; can
be broken. If the mode is halt at tg there will be several t;
(tg < t;), the on-line algorithm applies with errors across
the time interval between tg and t; (halt(ty) and Aj4(t;)). A
similar aspect appears between stop (period,) and restart
{period,,) scheduling periods.

In the fourth case, the Aj4(t;) records are independent
of aspects arising due to the LogRecord class. Moreover,
A;4(t) values are individually recorded for each DS com-
ponent. Consequently, the managing objects can easily
evaluate in time the current availability of each compo-
nent.

The input data at ¢; are based on Aj4(t;_;). Since the
registered timing is system-use dependent, we have iden-
tified three functional continuity contexts with respect to
the initialization of the on-line algorithm: (1) the DS is
continuously used without breaks, (2) the DS is used pe-
riodically, and (3) the DS is used intermittently without a
well defined frequency. Regardless of the context, the
A;4(t;) values must be computed at correct time stamps.

If the system continuously runs, the on-line algo-
rithm allows to easily pass from a computing period (tT)
to another, since only few data must be stored namely,
A,4(tr) values, where ty is the length of a considered pe-
riod. If the event pair (remove, start-period) is within the
same running period of a system, we can compute the un-
availability time for the interruptions with repair compo-
nents.

The event start-period ensures the initialization as
prescribed in the input data of the on-line algorithm. If the
system works in these two contexts, the inactivity period
is not caused by the component. Consequently, this time
is ignored in computing current values. The start-period
event for a component must consider the initial values
corresponding to the values computed at the end of the
precedent period.

6: Using current availability features within
DSs

Let us suppose now that we have somewhere current
availability values as previously introduced. In the gener-
al case, amanaging system may have three kinds of views
on the current availability values of real DS resources, de-
pending on the period that the managing system keeps
these values: (1) the last updated vaijues, (2) a set of val-
ues within one period, and (3) a set of values across sev-
eral successive periods. The managing system can use
these values for different purposes as follows, as suggest-
ed by different kinds of policies presented in Section 3:
1. - to build availability statistics on new DS components;
2. - to update availability statistics on existing DS compo-

nents;

3. - to monitor DS components with respect to guaranteed
threshold values for their availability;

4. - to predict future current availability of a component;

5. - to establish consistent customer-provider cooperation
relations based on the current availa -

bility values.

6. - to improve the existing DS configuration;
7. - to accommodate the polling frequency according to
the current availability tendency.

Since the first two cases are straightforward, we con-
centrate on the remainder. Let us take again the satellite
channel example, whose availability guaranteed is A =
99.6. If, for instance, one accepts a deviation of g€y =2.5,
the accepted availability becomes 97.1. However, each
satellite channel presents its own current availability at
run time. Several scenarios could be considered. If the
channel has a decreasing current availability tendency,
the management system must simultaneously look for an-
other channel (prediction) and indicate this aspect to the
reconfiguration module. If the guaranteed threshold is
nearly reached, the polling frequency must be updated, in
order to capture the current evolution more frequently.
Once the accepted availability is reached, the managing
system must lock the administrativeState of the corre-
sponding managed object, avoiding an in-chain degrada-
tion.

Let us suppose now that a high priority application
needs a host node within a network. Knowing the A;4(t;)
values, a manager can choose between the most available
nodes (allocation aspects). Even further, if a system com-
ponent needs services of another system component with
several constraints expressed by requested A;(t;) values,
the allocation can be performed by taking into account
current availability values offered by potential customers
and other policies presented in Section 3.

Finally, if no requested services are detected, but sev-
eral DS components have a decreasing current availabili-
ty, the management systems may decide to reconfigure a
part of the DS in order to ensure the system survivability.

28

This approach has been implemented in two distinct
applications. The first one has considered management
procedures for evaluating the provider health in a hierar-
chical architecture. The work has been implemented at
the University of Montreal by using the language Mondel
in the OSIMIS [15] environment. The second application
refers to the variable polling frequency used by managers
within distributed systems to get current information on
component states. The optimization of the polling fre-
quency is based on the operational state and the health
evaluation. The implementation platform consists of
SNMP-agents [8] and a SNMP/CMIP-proxy [17].

7: Conclusion and future work

We have presented a way to evaluate the availability
of a system component in real-time. We have proposed a
procedure to compute the current availability, and de-
fined several derived features (current availability ten-
dency and weighted average of current availability) used
for monitoring system components represented as man-
aged objects. Different aspects related to a real imple-
mentation of a computing algorithm according to existing
real systems are described. Several management issues
using current measured values are presented.

A combination of real-time measurements and cer-
tain refinements of the operational and usage states of a
managed object allowed us to propose different manage-
ment policies. Based on the relation is-better-than, that
we proposed, we have presented various concrete combi-
nations of simple management policies.

We have considered a single system component at a
time. We have shown that even in this simple case, the
QoS management can be enhanced by our approach. The
algorithm for computing the current availability has been
fully implemented.

The next aspect is how these component features may
be combined within a subsystem having many compo-
nents which interact. We are currently working on an al-
gorithm to automatically infer similar properties for
subsystems composed of several components.

Acknowledgements

This work was funded by the Ministry of Industry,
Commerce, Science and Technology, Quebec, under IG-
LOO project organized by the Computer Research Insti-
tute of Montreal, and by a grant from the Canadian
Institute for Telecommunication Research (CITR) under
the Networks of Centres of Excellence Program of the
Canadian Government. The authors thank Catherine Ag-
baw and Kamel Bendaas for implementing certain as-
pects related in this paper. Reviewers’ comments helped
us to improve the presentation.

References

(1] Harold Aschold and Harry Feingold, Repairable Systems
Reliability: Modeling, Inference, Misconceptions, and Their
Causes, Marcel Dekker Inc., New York, 1984, (Lecture
Notes in Statistics, Volume 7)

[2} Alessandro Birolini, On the Use of stochastic Processes in
Modeling Reliability Problems, Springer-Verlag, 1985
(Lecture Notes in Economics and Mathematical Systems,
252)

{3] Raouf Boutaba, Bertil Folliot, Pierre Sens, Efficient Re-
source Management in Local area Networks, in Proc. of the
International Conference on Advanced Information Process-
ing Techniques for LAN and MAN Management, IFIP WG
6.4, Versailles, France, Avril 1993, pp. 111/29-38

[4] ISOIEC 9596-1:1991, Information technology - Open Sys-
tem Interconnection - Common Management Information
Protocol - Part 1. Specification, CAN/CSA-Z243.142-91

[5] Petre Dini, Catherine Agbaw, Real-Time Pro-active Man-
agement of Distributed Systems Based on Variable Polling
Frequency, Technical Report, [GLOO Project, CRIM/Univ-
er-sity of Montreal, December 1995

[6] Petre Dini, Gregor v. Bochmann, Isaam Hamid, Dynamic
Constraints Specification of Object Interactions Within Dis-
tributed Systems, in "Dynamic Modification of Distributed
Systems Specification using Object-Oriented Techniques”,
ed. Issam Hamid, Project Number 06044195, sponsored by
The Ministry of Science, Culture, and Education of Japan,
Japan, March 1996

29

[7] Petre Dini, Gregor v. Bochmann, Modeling QoS Multimedia
Costs in Distributed Systems, The 1996 Pacific Workshop
on Distributed Multimedia Systems, Hong Kong University
of Science and Technology (HKUST), Hong Kong, June 25-
28, 1996.
[8] Sidnie Feit, SNMP: A Guide to Network Management, Mc-
Graw-Hill, Inc., 1995
[9] Charles R. Kime, System Diagnosis, in: Fault-Tolerant
Computing - Theory and Techniques, ed: Dhiraj K. Pradhan,
Prentice-Hall, 1986, New Jersey 07632
[10] Krishna K. Misra, Reliability Analysis and Prediction, El-
sevier, 1992
[11] Michael K. Molloy, Fundamentals of Performance Mode-
ling, Macmillam, Publishing Company, 1989, New York
10022
[12] Alain Pagés and Michel Gondran, System Reliability: Eval-
uation & Prediction in Engineering, Springer-Verlag,
1986

[13] Shahen Neyaz, Estimation of Reliability Parameters of a
Redundant System with one Standby and one Repair Facil-
ity, Master Thesis, Concordia University, 1987

[14] J.J. Stifter, Computer-Aided Reliability Estimation, in:
Fault-Tolerant Computing - Theory and Techniques, ed:
Dhiraj K. Pradhan, Prentice-Hall, 1986, New Jersey 07632

[15] *** A Guide to Implementing Managed Objects Using

the GMS, Version 2.99.1, UCL, October 1992, Draftl

[16] Pramode Verma, Modéles de performances des réseaux,

InterEditions, Paris, 1992
[17] Catherine Agbaw, Management Data Collection and
Gateways, M.Sc. Thesis, McGill University, 1994.

